Общие сведения о двигателях постоянного тока

Общие сведения о двигателях постоянного тока

Принцип обратимости электрических машин.

Двигатели постоянного тока по конструкции не отличаются от генераторов и, как отмечалось, электрические машины постоянного тока могут работать как в режиме генератора, так и в режиме двигателя, т.е. являются обратимыми. Допустим, что машина работает в режиме генератора на сеть с постоянным напряжением U=const и развивает тормозной (по отношению к первичному двигателю) момент Mт (рис.1).

Для  этого режима справедливы соотношения

Соотношение

где ?r- полное сопротивление цепи якоря.

Рис. 1 - Генераторный и двигательный режимы машины постоянного тока

Рис. 1 — Генераторный и двигательный режимы  машины постоянного тока

Если уменьшать ЭДС Еа генератора, уменьшая его частоту вращения или магнитный поток Ф, то будет уменьшаться и ток Ia. Когда Еа станет меньше напряжения U, ток Ia изменит свое направление, однако, посколь­ку U=const, направление тока Ia в обмотке возбуждения, а следовательно и полярность основных полюсов останутся без изменения. При этих условиях изменяется знак электромагнитного момента Мг и машина переходит в двигательный режим, т.е. если прежде она работала генератором, преобразовывая механическую мощность в электрическую, то теперь она потребляет электрическую мощность, преобразовывая эту мощность в механическую и развивая на валу вращающий момент Мд. При этом машина продолжает вращаться в прежнем направлении. Если отсоединить первичный двигатель и приложить к валу машины момент сопротивления механизма Мс, то он будет преодолеваться электромагнитным моментом Мэм.

Классификация двигателей постоянного тока.

Аналогично генераторам, двигатели постоянного тока классифицируются по способу включения обмотки возбуждения по отношению к обмотке якоря — независимого, параллельного, последовательного и смешанного возбуждения. Схемы двигателей и генераторов с перечисленными способами возбуждения одинаковы и приведены на (рис. 1.). Все типы двигателей в зависимости от вида возбуждения имеют различные характеристики, но в основе их работы лежит один и тот же энергетический процесс, характеризуемый уравнениями равновесия ЭДС и моментов.

Уравнение ЭДС двигателя в установившемся режиме работы имеет вид

Уравнение ЭДС двигателя в установившемся режиме работы имеет вид

ЭДС Еа в обмотке якоря направлена встречно приложенному напряжению, поэтому ее называют противо ЭДС.

Энергетическая диаграмма.

Энергетический процесс рассмотрим на примере двигателя параллельного возбуждения с помощью энергетической диаграммы (рис.2). Двигатель потребляет из сети мощность P1=U(Ia+Iв). Часть этой мощности тратится на покрытие потерь на возбуждение ?Pв=UIв и потери в цепи якоря ?Рэ=Ia2?r.

Энергетическая диаграмма

Рис. 2 — Энергетическая диаграмма

Оставшаяся часть мощности представляет собой электромагнитную мощность якоря Pэм, которая преобразовывается в полную механическую мощность

Pэм= U(Ia+Iв) — UIв — Ia2

Полезная механическая мощность P2, отдаваемая двигателем рабочему механизму, меньше мощности Pэм на величину потерь холостого хода ?Pо, включающих потери в стали якоря ?Pст и механические потери Pмех (трение в подшипниках, вентиляционные и т.д.)

 P2= Pэм— ?Po = Pэм — (?Pc — ?Pмех)

Полезная мощность P2 обозначается на заводском щитке машины.

Аналогично происходит энергетический процесс в двигателях других типов.

Уравнение равновесия моментов.

Уравнение вращающих моментов в установившемся режиме можно получить, разделив все члены равенства на W (угловую скорость вращения двигателя)

Уравнение равновесия моментов

где М2 — момент сопротивления рабочего механизма; Мо-момент холостого хода.

Вращающий электромагнитный момент равен

Вращающий электромагнитный момент равен

Таким образом, вращающий электромагнитный момент расходуется на уравновешивание двух тормозящих моментов:

— момента сопротивления рабочего механизма М2  ;

— момента холостого хода Мо, соответствующего потерям Росмх.

Момент М2 называется полезным моментом, т.к. он соответствует полезной мощности двигателя Р2. В неустановившемся режиме скорость двигателя изменяется и на его валу возникает динамический момент. Уравнение равновесия мо­ментов в таких режимах приобретает вид

Уравнение равновесия мо¬ментов в таких режимах приобретает вид

где Мст2о -статический момент сопротивления;

динамический момент — динамический момент.

В зависимости от того, уменьшается или увеличивается частота вращения двигателя, динамический момент может быть отрицательным или положительным, т.е. в переходных режимах на валу двигателя создается момент Мj, который препятствует изменению скорости вращения двигателя и механизма. В установившемся режиме динамический момент Мj=0.

Характеристики двигателей постоянного тока.

Рабочие свойства электродвигателей постоянного тока оцениваются следующими характеристиками:

1. Пусковые характеристики, которые оценивают пусковые свойства электродвигателя. К ним относятся:

кратность пускового тока — кратность пускового тока; где Iап — пусковой ток ;  Iан— номинальный ток нагрузки;

 

кратность пускового момента — кратность пускового момента; где МпмIапФп;

 

— tп -время пуска;

— экономичность пуска (стоимость пусковой аппаратуры, пусковые потери).

2. Рабочие характеристики, под которыми понимают зависимости n, M и h от полезной мощности P2 или тока якоря Ia при постоянных значениях напряжения Uс, сопротивления цепи якоря ?rи сопротивления цепи возбуждения rв. Зависимость n=f(P2) называют скоростной характеристикой, зависимость М=f(P2)- моментной характеристикой.

3. Механическая характеристика, представляющая собой зависимость n=f(M) при постоянных значениях Uн, rа, rв.

4. Регулировочные характеристики, к которым относятся:

— диапазон регулирования скорости nmax/nmin;

— экономичность регулирования (потери, стоимость аппаратуры);

— характер регулирования (плавность);

— простота, надежность и компактность регулировочной аппаратуры.

Ссылка на основную публикацию