Электродвижущая сила в обмотке электрической машины индуктируется только при условии изменения потокосцепления магнитного поля с витками катушки, что находит отражение в известном соотношении:
отражающем закон электромагнитной индукции. Потокосцепление может изменяться под действием различных причин.
При вращении витка в магнитном поле или при перемещении магнитного поля относительно неподвижного витка в нем индуктируется ЭДС, которую называют ЭДС вращения. При изменении во времени потока, сцепленного с неподвижным витком, в нем индуктируется так называемая трансформаторная ЭДС. Во всех случаях величина и характер изменения индуктируемой ЭДС определяется величиной и характером изменения потокосцепления и также параметрами витка.
Определим ЭДС в одной катушке обмотки статора синхронного генератора, имеющей число витков Wк и диаметральный шаг (рис. 3).
Частота индуктируемой в витке ЭДС определяется скоростью вращения и числом пар полюсов ротора. Одному повороту двухполюсного ротора соответствует один период изменения ЭДС. Для того чтобы в двухполюсном СГ получить частоту ЭДС 50 Гц, необходимо вращать ротор со скоростью 50 оборотов в секунду или 3000 оборотов в минуту. При увеличении числа полюсов скорость вращения ротора будет пропорционально уменьшается. В общем случае, если ротор имеет 2р полюсов и вращается со скоростью n об/мин, то частота ЭДС равна:
Величину ЭДС вращения удобно определить по соотношению:
из которого ясно видна зависимость формы кривой ЭДС от характера распределения магнитной индукции на полюсном делении.
Одно из основных требований, предъявляемых к генераторам переменного тока, заключается в обеспечении синусоидальности изменения во времени ЭДС, индуктируемой в обмотке статора, т.е. в обеспечении зависимости:
Как отмечалось выше, в СГ это достигается за счет создания в воздушном зазоре между статором и ротором синусоидального (или близкого к синусоидальному) распределения магнитной индукции по ширине полюсного деления.
Практически распределение поля в зазоре всегда отличается от синусоидального, что связано как с несинусоидальностью распределения МДС (особенно в неявнополюсном роторе, так и с наличием зубцов на статоре, насыщением и т.д. Следовательно, и ЭДС в обмотках также несинусоидальна. Для упрощения расчетов и анализа физических процессов в электрических машинах несинусоидальную кривую магнитной индукции представляют в виде гармонического ряда синусоидальных кривых, в который кроме первой (основной) гармоники B1 входят высшие гармонические порядка 3, 5, 7 (В3, В5 В7) и т.д. (рис. 2) и считают, что каждая из этих гармоник индуктирует в обмотке синусоидальную ЭДС соответствующего порядка.
Рассмотрим величину ЭДС в проводнике от первой гармоники магнитной индукции:
где в соответствии с соотношением:
имеем
Полный магнитный поток от 1-й гармоники магнитной индукции равен (рис. 2 ,а) :
откуда получаем:
Окружная скорость вращения ротора равна:
Рис. 1 — Принцип построения трехфазных обмоток машин переменного тока: а,б) – двухполюсная обмотка с диаметральным шагом; в) – двухполюсная обмотка с укороченным шагом
Подставляя:
и
в
получаем:
Практический интерес представляет действующее значение ЭДС первой гармоники:
ЭДС для витка с диаметральным шагом (рис. 2 ,б) складывается из ЭДС двух проводников, находящихся под полюсами разной полярности:
а ЭДС катушки с диаметральным шагом равна:
ЭДС, индуктируемые в катушке высшими гармониками магнитной индукции, рассчитываются по аналогичным соотношениям:
где ? — порядок пространственной гармоники.
Магнитный поток Ф?m определяется из соотношения:
Для пространственных гармоник магнитного поля f? = f1.
Для катушки с укороченным шагом (как на рис. 1, в) ЭДС уменьшается, что связано с уменьшением магнитного потока Фm (рис.2 ,в). Коэффициент укорочения ку определяется отношением геометрической суммы ЭДС двух проводников (рис.2 ,в) :
к арифметической сумме, определяемой по :
т.е.Где выражение :
характеризует относительный шаг обмотки.
Следовательно, ЭДС катушки с укороченным шагом рассчитывается по формуле:
Укорочение обмотки помимо экономии обмоточных материалов позволяет существенно уменьшить действие высших гармоник магнитной индукции, что показано на рис. 2,в.
Выбирая, например, укорочение :
можно добиться полного устранения действия пятой гармоник магнитной индукции, т.к. ЭДС в противоположных проводниках витка от этой гармоники поля равны по величине, но направлены навстречу друг другу.
Рис. 2 — Распределение магнитной индукции под полюсом: а – разложение индукции на гармонические; б – ЭДС витка с диаметральным шагом; в – ЭДС витка с укороченным шагом.
На практике чаще всего применяют укорочение:
что позволяет существенно уменьшить одновременно и пятую, и седьмую гармоники, наиболее проявленные в общей кривой ЭДС.
ЭДС катушечной группы, состоящей из q последовательно соединенных и расположенных в соседних пазах катушек определяется как геометрическая сумма векторов ЭДС отдельных катушек, сдвинутых в пространстве на угол:
Например, при q=3, 2р=2 и z =18, угол ? составляет 20°. На рис. 3 эти ЭДС показаны тремя векторами, каждый из которых представляет собой действующее значение ЭДС одной катушки.
Рис. 3 — ЭДС катушечной группы
Из построения следует, что геометрическая сумма рассматриваемых ЭДС, равная:
меньше арифметической суммы ЭДС отдельных катушек qЕк. Таким образом, распределение катушек, составляющих фазу обмотки, по пазам приводит к уменьшению результирующей ЭДС, что учитывается коэффициентом распределения, равным:
Выражение для ЭДС фазы обмотки статора (для первой гармоники) записывается в виде:
где члены выражения:
— обмоточный коэффициент для первой гармоники;
— число последовательно соединенных витков фазы.
Для определения высших гармоник ЭДС фазы используют соотношение:
где член выражения:
Результирующая ЭДС фазы с учетом высших гармония определяется из соотношения:
Как отмечалось выше высшие гармоники искажают ЭДС и форма напряжения на зажимах СГ становится несинусоидальной. Это отрицательно сказывается как на работе самого генератора, так и потребителей электроэнергии — асинхронных двигателей, систем управления, вычислительных комплексов, навигационных приборов и т.д. Снижаются КПД и коэффициент мощности потребителей, увеличиваются потери энергии, появляются погрешности в измерениях, повышаются шумы и вибрации электрических машин.
Поэтому коэффициент несинусоидальности кривой напряжения судовых СГ, под которым понимают отношение:
не должен превышать 10 %.
Укорочение шага обмотки, ее распределение по пазам способствуют улучшению формы кривой ЭДС и напряжения. Кроме того, для этих же целей часто применяют скос пазов на статоре (или на роторе) на одно зубцовое деление.
На форму кривой ЭДС также оказывает влияние способ соединения фаз — «звезда» (Y), или «треугольник» (?). В трехфазных системах первые гармоники ЭДС отдельных фаз сдвинуты на 120°относительно друг друга, а ЭДС третьих и кратных трем гармоник — на 360°, т.е. совладают по фазе и при соединении фаз в «звезду» в линейных напряжениях эти гармоники отсутствуют. При соединении фаз обмотки в «треугольник» ЭДС этих гармоник по контуру «треугольника» складываются и создают ток тройной частоты. В линейных напряжениях и в этом случае гармоник, кратных трем, не содержится.
Все эти особенности необходимо учитывать при эксплуатации электрических машин.