В книгу входят популярные рассказы об основах электротехники, электроники и радиотехники, о звукозаписи, телевидении, радиоприеме, электронной музыке, об автоматике и вычислительной технике. В ней много практических схем и описаний конструкций для самостоятельного изготовления.
Архив за февраля, 2013
Для определения параметров схемы замещения трансформатора проводят его испытания в режиме холостого хода и опытного короткого замыкания.
Схема опыта холостого хода приведена на рис.1 . Первичную обмотку подключают на номинальное напряжение и измеряют ток холостого хода I0 , мощность P0, напряжение на разомкнутой вторичной обмотке U20 .
Рис. 1 — Схема опыта холостого хода
Мощность P0, потребляемая из сети, расходуется на потери в меди ∆Pm1 = I02r1 и потери в стали ∆Pст= I02rm при этом, поскольку rm»r1, потерями в первичной обмотке ΔPm1 пренебрегают и считают, что вся потребляемая из сети мощность расходуется на потери в стали, т.е.:
откуда:
Исходя из схемы замещения (рис. 2, а ) и пренебрегая величиной z1 по сравнению с zm можно определить величину zm из соотношения:
откуда:
Коэффициент мощности при холостом ходе определяется из соотношения:
Коэффициент трансформации равен:
Схема опыта короткого замыкания приведена на рис. 2.
Рис. 2 — Схема опыта короткого замыкания
В этом опыте вторичная обмотка замыкается накоротко, а на первичной обмотке с помощью регулятора устанавливают такое напряжение U1k, при котором ток в первичной обмотке равен номинальному I1k = I1н. Величина U1k имеет весьма важное эксплуатационное значение и всегда указывается на щитке трансформатора. Обычно она указывается в процентах от номинального напряжения и для однофазных трансформаторов составляет 3%…5%.
Поскольку в рассматриваемом режиме U2=0, то трансформатор не отдает потребителю полезной мощности и вся мощность P1k, потребляемая из сети, расходуется на потери. Т.к. потери в стали ΔРст пропорциональны квадрату магнитной индукции ΔРст ≈ В2 ≈ Е2 ≈ U12, то, ввиду малости напряжения U1k, этими потерями пренебрегают и считают, что вся потребляемая мощность расходуется на потери в обмотках, т. е:
откуда получаем:
Полное сопротивление короткого замыкания равно:
поэтому :
Принимая далее, что :
получаем все параметры Т-образной схемы замещения трансформатора.
Поскольку в приведенной вторичной обмотке ЭДС
равна ЭДС E1, то оказывается возможным схемы замещения первичной обмотки (рис. 2,а) и вторичной обмотки (рис. 2,б) с измененными параметрами объединить в одну схему замещения, соединив электрически точки равного потенциала. Такая полная двухконтурная схема замещения показана на рис. 1. Ее часто называют Т-образной схемой замещения приведенного трансформатора.
Рис. 1 — Т-образная схема замещения приведенного трансформатора
На этой схеме ветвь c – d с сопротивлениями rm и xm и током I0 называют ветвью намагничивания, ветвь А – с с током I1 - первичной ветвью, ветвь с – а– х – d с током — вторичной ветвью или вторичным контуром.
Параметры схемы имеют строго определенные наименования: rm — активное сопротивление ветви намагничивания, учитывающее потери в стали магнитопровода на перемагничивание и вихревые токи:
— индуктивное сопротивление взаимоиндукции (ветви намагничивания).
Величина:
поэтому принимают, что:
r1 и r2’ — активные сопротивления первичной и приведенной вторичной обмоток; x1 и x2' — индуктивные сопротивления рассеяния первичной и приведенной вторичной обмоток;
- приведенное сопротивление нагрузки. Уравнения равновесия токов и ЭДС приведенного трансформатора записываются на основании 1 и 2 законов Кирхгофа:
Полная векторная диаграмма приведенного трансформатора (рис.2) является графическим решением приведенных уравнений электрического равновесия.
Рис. 2 — Векторная диаграмма приведенного трансформатора
Она объединяет векторные диаграммы первичной и вторичной обмоток, показанные на рис. 3 , при этом векторы ЭДС
и
между собой, а все построения для вторичной обмотки производятся для приведенных параметров.
Как отмечалось выше, в режимах номинальной нагрузки ток холостого хода I0 очень мал по сравнению с током I1н. Тем более он несоизмеримо мал по сравнению с током короткого замыкания, поэтому в этих режимах им можно пренебречь и в расчетах пользоваться упрощенной схемой замещения (рис. 3).
Рис. 3 - Упрощенная схема замещения приведенного трансформатора
Сопротивления rk = r1 +r2' и xk= x1 + x2называют сопротивлениями короткого замыкаия.
Уравнения электрического равновесия для упрощенной схемы имеют вид:
Сварочные трансформаторы (рис. 1,а) предназначены для обеспечения сварочных работ. Поскольку сопротивление сварочной дуги весьма мало, то при работе трансформатор находится в режиме, близком к короткому замыканию и поэтому должен иметь мягкую внешнюю характеристику с ограниченным током короткого за мыкания (рис. 1 ,б). Получение такой внешней характеристики достигается за счет больших индуктивных сопротивлений или в самом трансформаторе, или во внешних устройствах. Для этого последовательно со вторичной обмоткой включают дроссель с регулируемым воздушным зазором.
Рис.1 — Сварочный трансформатор (а) и его внешние характеристики (б)
Регулирование величины сварочного тока достигается изменением индуктивного сопротивления дросселя за счет изменения воздушного зазора. Чем меньше воздушный зазор δ (рис. 1 а и б) в сердечнике дросселя, тем больше его индуктивное сопротивление и тем меньше сварочный ток – ток нагрузки трансформатора.