Архив за июля, 2012


На рис.1 изображена схема включения диода.
Батарея, накаливающая катод, называется батареей накала Б н. Цепь, образованная этой батареей и нитью, называется цепью накала.

Способы изображения цепей лампы - диода в схемах.
Рис.1 — Способы изображения цепей диода в схемах.

Нить накала обозначают буквой н, катод — буквой к. Ток накала, проходящий через нить, обозначают Iн, а напряжение накала, т. е. напряжение на концах нити, Uн. Для контроля величины Uн включают вольтметр, а для регулировки накала включают реостат. Однако эти приборы не обязательны.

Напряжение накала у маломощных ламп не превышает нескольких вольт; ток накала у них порядка десятков или сотен миллиампер. При применении нескольких ламп их нити накала соединяют параллельно, если напряжение батареи Бн примерно равно нормальному напряжению накала, а если источник накала дает значительно большее напряжение, то нити соединяют последовательно (при одинаковом токе накала) или смешанно. Для поглощения избытка напряжения в цепь накала вместо реостата или помимо него включают некоторое постоянное сопротивление.

Батарея, включенная между катодом и анодом, называется батареей анода Ба. Цепь, составленная из этой батареи и пространства между анодом и катодом внутри лампы, называется анодной цепью. Для обозначения этой цепи принята буква а.

Ток в анодной цепи называют анодным током или током анода и обозначают Iа. Он представляет собой поток электронов, летящих от катода к аноду внутри лампы.

В электротехнике принято обратное движению электронов условное направление тока от плюса источника тока ло внешней цепи к минусу источника. Оно показано на рис.1 стрелками. Но при изучении электронных ламп целесообразно рассматривать истинное движение электронов от минуса источника к его плюсу. Электроны анодного тока движутся в направлении от минуса Ба на катод лампы, внутри лампы они летят с катода к аноду, далее они движутся в направлении от анода к плюсу Ба и внутри анодной батареи от ее ллюса к минусу. Анодный ток может быть при условии, если катод достаточно накален, анод имеет положительный потенциал по отношению к катоду и анодная цепь замкнута.

Разность потенциалов между анодом и катодом называют анодным напряжением или напряжением на аноде и обозначают Uа. Для схемы рис.1 оно равно напряжению анодной батареи.

Вообще при рассмотрении процессов в любых электронных приборах потенциал катода считают нулевым и потенциал всех электродов указывают относительно катода.

Именно анодное напряжение создает анодный ток. Назначение цепи накала — обеспечить нагрев катода. Назначение анодной цепи — при наличии эмиссии катода создать анодный ток.

На схеме рис.1 а, к одному концу катода присоединены минус Ба и минус Бн. Эта точка называется общим минусом и обычно соединяется с металлическим корпусом. Ее считают точкой нулевого потенциала и все напряжения измеряют относительно этой точки. Соединение Ба и Бн часто делается у выводов батарей или на зажимах, служащих для присоединения батарей. Тогда по проводу общего минуса идут вместе токи накала и анода.

Схемы с электронными лампами можно изображать по-разному. На рис.1 а, изображены батареи накала и анода, а на рис.1 б, показаны лишь зажимы этих батарей. Цепь накала для упрощения обычно полностью не показывают, а от нити ведут лишь один провод к минусу батареи анода (рис.1 в). Иногда показывают только один плюсовой зажим анодной батареи, подразумевая, что ее минус включается на корпус.

У ламп небольшой мощности анодное напряжение может быть до нескольких сотен вольт, а анодный ток всегда меньше тока накала и составляет несколько миллиампер или десятков миллиампер. Для измерения анодного тока в анодную цепь включают миллиамперметр, а для измерения анодного напряжения— вольтметр (рис.2 а). На рис.2 6 изображена неправильная схема, в которой миллиамперметр будет показывать сумму анодного тока и тока, потребляемого вольтметром.

Измерение анодного тока и анодного напряжения

 

Рис.2 — Измерение анодного тока и анодного напряжения: а—травильное включение приборов, б — неправильное

Основное свойство диода — способность проводить ток только в одном направлении. Электроны могут двигаться только от катода к аноду и только тогда, когда анод имеет положительный потенциал относительно катода. При обратной полярности диод заперт для тока; он размыкает цепь, так как отрицательно заряженный анод отталкивает электроны. Сам же анод не испускает электроны, которые могли бы притягиваться к положительно заряженному катоду.

Итак, диод имеет одностороннюю проводимость. Он является вентилем, т. е. прибором, пропускающим ток в одну сторону.

Схема и графическое изображение выпрямления переменного тока с помощью диода

Рис.3- Схема и графическое изображение выпрямления переменного тока с помощью диода

Благодаря этому диод применяется для выпрямления переменного тока, т. е. преобразования переменного тока в ток одного направления. Схема выпрямления с помощью диода (рис.3 а) состоит из последовательно включенных генератора переменного тока Г, диода Д и нагрузочного сопротивления R. Генератор дает переменную эдс Е (рис. 3 б), а ток в цепи и напряжение на сопротивлении R будут пульсирующими (рис.3 в). Отрицательные полуволны тока не проходят через диод. Если учесть направление движения электронов через со-лротивление R, то ясно, что конец сопротивления R, соединенный с катодом диода, всегда имеет положительный потенциал.




В электронных лампах используются потоки свободных электронов в вакууме. Поэтому в каждой электронной лампе необходимо получить в достаточном количестве свободные электроны. Явление выделения свободных электронов с поверхности тех или иных веществ называют электронной эмиссией.

Испускание электронов под влиянием тепла называют термоэлектронной эмиссией. К другим видам эмиссии относятся: электростатическая или автоэлектронная эмиссия — вырывание электронов сильным электрическим полем, вторичная электронная эмиссия — выбивание электронов ударами быстро движущихся электронов, электронная эмиссия под ударами ионов, фотоэлектронная эмиссия — выделение электронов лод действием лучей света.

Работа электронных ламп основана на использовании термоэлектронной эмиссии, которая состоит в том,, что накаленный до высокой температуры проводник выделяет в окружающее пространство свободные электроны. Это объясняется тем, что в проводнике имеются беспорядочно движущиеся «полусвободные» электроны, скорость которых при нагревании увеличивается. При высокой температуре они движутся так быстро, что некоторые из них вылетают за .пределы проводника.

 

Способы изображения цепей лампы-диода на схемах. Диодная лампа.
Рис.1 — Способы изображения цепей диода на схемах

Простейшая двухэлектродная электронная лампа или диод представляет собой два электрода в стеклянном или металлическом баллоне (рис.1).

Одним электродом лампы служит нить накала, называемая катодом, другим электродом является металлическая пластинка, называемая анодом.

Катод служит для эмиссии электронов. Количество электронов, выделяемое катодом за каждую секунду, называют током эмиссии или просто эмиссией и выражают обычно в миллиамперах.

При малых температурах эмиссии практически нет, а при увеличении температуры она растет все быстрее и быстрее, достигая значительной величины при температурах порядка сотен градусов и выше. Чрезмерно повышать температуру нельзя, так как в конце концов нить перекалится и расплавится, что обычно не совсем правильно называют перегоранием.

Итак, чем больше температура катода, тем больше эмиссия. При увеличении поверхности катода эмиссия также становится больше. На величину эмиссии большое влияние оказывает материал катода.

Анод служит для того, чтобы притягивать электроны, выделяемые катодом, и создавать в лампе поток свободных электронов.

Чтобы анод мог притягивать электроны, он должен быть заряжен положительно. Притяжение электронов к аноду объясняется тем, что между анодом и катодом образуется электрическое поле. Электроны, вылетевшие из катода, под действием этого поля движутся к аноду (рис.2).

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ДИОДА

 

Рис.2 — Действие электрического поля анода на электроны в диоде

Баллон служит для того, чтобы внутри лампы можно было создать вакуум, т. е. пространство, из которого удален почти весь воздух. Для свободного движения электронов к аноду вакуум должен быть очень высоким. Наличие воздуха в лампе недопустимо и потому, что накаленный катод сгорит, т. е. вступит в химическое соединение с кислородом. Если вакуум недостаточен, то электроны при полете от катода к аноду, ударяя в молекулы воздуха, ионизируют их. Из молекул будет выбита часть электронов, и молекулы превратятся в положительные ионы. Ионы, отталкиваемые анодом, двигаются к катоду и создают ионный ток, нарушающий правильную работу лампы. В хорошей лампе после откачки остается не более одной миллиардной доли воздуха, бывшего вначале. Но зато ионные приборы основаны на использовании явления ионизации.

Воздух из баллона выкачивают сначала насосами .предварительного разрежения (форвакуумными насосами), а затем вы-соковауумными. Кроме того, в лампу заранее помещают кусочек металла магния или бария, называемый поглотителем или геттером. После откачки лампу разогревают, геттер испаряется и при охлаждении оседает на стекле баллона, покрывая его с внутренней стороны зеркальным (магний) или коричневато-черным (барий) налетом. Этот слой металла поглощает остатки воздуха и газы, выделяющиеся из электродов лампы во время работы, т. е. поддерживает высокий вакуум.

В цилиндрической конструкции электродов (рис.1 а) анод выполняется в виде цилиндра (трубочки), а катод прямой или согнут в виде буквы Л. В прямоугольной конструкции анод имеет форму коробочки, а катод сделан в виде -буквы Л или М (рис.1 б). Бывают и иные формы электродов. Материалом для анода служит обычно тугоплавкий металл, например никель, молибден, тантал, а иногда и уголь.



теги: ,


Во всех электронных и ионных приборах электронные потоки в вакууме или газе, находящемся под тем или иным давлением, подвергаются воздействию электрического поля. Взаимодействие движущихся электронов с электрическим .полем является основным процессом в электронных и ионных приборах. Рассмотрим движение электрона в электрическом поле.

Движение электрона в ускоряющем, тормозящем и поперечном электрических полях

 

Рис.1 — Движение электрона в ускоряющем (а), тормозящем (б) и поперечном (в) электрических полях

На рис.1 а, изображено электрическое поле в вакууме между двумя плоскими электродами. Они могут представлять собой катод и анод диода или любые два соседних электрода многоэлектродного прибора. Представим себе, что из электрода, имеющего более низкий потенциал, например из жатода, вылетает электрон с некоторой начальной скоростью Vo. Поле действует на электрон с силой F и ускоряет его движение к электроду, имеющему более высокий положительный потенциал, например к аноду. Иначе говоря, электрон притягивается к электроду с более высоким положительным потенциалом. Поэтому поле в данном случае называют ускоряющим. Двигаясь ускоренно, электрон приобретает наибольшую скорость в конце своего пути, т. е. при ударе об электрод, к которому он летит. В момент удара кинетическая энергия электрона также будет наибольшей. Таким образом, при движении электрона в ускоряющем поле происходит увеличение кинетической энергии электрона за счет того, что поле совершает работу по перемещению электрона. Электрон всегда отнимает энергию от ускоряющего поля.

Скорость, приобретаемая электроном при движении в ускоряющем поле, зависит исключительно от пройденной разности потенциалов U и определяется формулой

 

Скорость, приобретаемая электроном при движении в ускоряющем поле

Удобно скорости электронов выражать условно в вольтах. Например, скорость электрона 10 в, означает такую скорость, которую электрон приобретает в результате движения в ускоряющем поле с разностью потенциалов 10 в. Из приведенной формулы легко найти, что при U — 100 в скорость V ~ 6 000 км/сек. При таких больших скоростях время пролета электрона в пространстве между электродами получается весьма малым, порядка 10 в минус 8 — 10 в минус 10 сек.

Рассмотрим теперь движение электрона, у которого начальная скорость Vo направлена против силы F, действующей на электрон со стороны поля (рис.1 б). В этом случае электрон вылетает с некоторой начальной скоростью из электрода с более высоким положительным потенциалом. Та,к как сила F направлена навстречу скорости Vo, то получается торможение электрона и поле называют тормозящим. Следовательно, одно и то же поле для одних электронов является ускоряющим, а для других— тормозящим, в зависимости от направления начальной скорости электрона.

Кинетическая энергия электронов, движущихся в тормозящем поле, уменьшается, так как работа совершается не силами поля, а самим электроном, который .преодолевает сопротивление сил поля. Энергия, теряемая электроном, переходит к полю. Таким образом, в тормозящем поле электрон всегда отдает энергию полю.

Если начальную скорость электрона выражать в вольтах (Uo), то уменьшение скорости равно той разности потенциалов U, которую проходит электрон в тормозящем поле. Когда начальная скорость электрона больше, чем разность потенциалов между электродами (Uo> U), то электрон пройдет все расстояние между электродами и попадет на электрод с более низким потенциалом. Если же Uo < U, то, пройдя разность потенциалов, равную Uq, электрон полностью потеряет свою энергию, скорость его станет равна нулю, он на-момент остановится и начнет ускоренно двигаться обратно (рис.1 б).

Если электрон влетает с некоторой начальной скоростью Vo под прямым углом к направлению силовых линий поля (рис.1 в), то поле действует на электрон с силой F, направленной в сторону более высокого положительного потенциала. Поэтому электрон совершает одновременно два взаимно-перпендикулярных движения: равномерное движение по инерции со скоростью vQ и равномерно-ускоренное движение в ваправлении действия силы F. Как известно из механики, результирующее движение электрона должно происходить по параболе, причем электрон отклоняется в сторону более положительного электрода. Когда электрон выйдет за пределы поля (рис.1 в), то дальше он будет двигаться ,по инерции прямолинейно равномерно.

Из рассмотренных законов движения электронов видно, что электрическое поле всегда воздействует на кинетическую энергию и скорость электрона, изменяя, их в ту или другую сторону. Таким образом, между электроном и электрическим полем всегда имеется энергетическое взаимодействие, т. е. обмен энергией. Кроме того, если начальная скорость электрона направлена не вдоль силовых линий, а под некоторым углом к ним, то электрическое поле искривляет траекторию электрона, превращая ее из прямой линии в параболу.
Рассмотрим теперь движение электрона в магнитном поле.

Движущийся электрон представляет собой элементарный электрический ток и испытывает со стороны магнитного поля такое же действие, как и проводник с током. Из электротехники известно, что на прямолинейный проводник с током, находящийся в магнитном поле, действует механическая сила под прямым углом к магнитным силовым линиям и к проводнику. Ее направление изменяется на обратное, если изменить направление тока или направление магнитного поля. Эта сила пропорциональна напряженности поля, величине тока и длине проводника, а также зависит от угла между проводником и направлением поля.

Она будет наибольшей, если проводник расположен перпендикулярно силовым линиям; если же проводник расположен вдоль линий поля, то сила равна нулю.

Движение электрона в поперечном магнитном поле
Рис.2 — Движение электрона в поперечном магнитном поле.

Если электрон в магнитном поле неподвижен или движется вдоль силовых линий, то на него магнитное поле вообще не действует. На рис.2 показано, что происходит с электроном, который влетает в равномерное магнитное поле, созданное между полюсами магнита, с начальной скоростью Vo перпендикулярно к направлению поля. При отсутствии поля электрон двигался бы по инерции прямолинейно .и равномерно (штриховая линия); при наличии поля на него будет действовать сила F, направленная под прямым углом к магнитному полю и к скорости v0. Под действием этой силы электрон искривляет свей путь и двигается по дуге окружности. Его линейная скорость Vo и энергия при этом остаются неизменными, так как сила F все время действует перпендикулярно к скорости Vo. Таким образом, магнитное поле в отличие от электрического поля не изменяет энергию электрона, а лишь закручивает его.




Широкое применение электронных и ионных приборов объясняется их ценными свойствами. С помощью этих приборов можно сравнительно просто и с высоким кпд преобразовать электрическую энергию одного вида в электрическую же энергию другого вида, отличающуюся по форме, величине и частоте тока или напряжения, а также энергию излучения в электрическую энергию и обратно. В последнем случае можно осуществить весьма сложные процессы, при которых оптическое изображение преобразуется в электрический ток специальной формы или наоборот (например, в телевизионных и осциллографических трубках). Малая инерционность, характерная для электронных приборов, позволяет применять их в огромном диапазоне частот от нуля примерно до 10 в 12 степени гц. При помощи электронных и ионных приборов можно осуществить удобное регулирование различных электрических, световых и других величин плавно или ступенями, с большой или малой скоростью и с относительно малыми затратами энергии на сам процесс регулирования, т.е. без значительного снижения кпд, характерного для многих других способов регулирования и управления.

Все эти достоинства электронных и ионных приборов обусловили их использование для выпрямления, усиления, генерирования и преобразования частоты различных электрических токов, осциллографии электрических и неэлектрических явлений, передачи и приема телевизионных изображений, различных измерений и многих других процессов.

Электронные и ионные приборы, иначе называемые электровакуумными, подразделяются на многие типы по различным признакам. Простейшие приборы, имеющие только два электрода (анод и катод), являются в большинстве случаев неуправляемыми. У более сложных, управляемых приборов электронный поток можно регулировать, воздействуя на него электрическим полем с помощью управляющих электродов, или магнитным полем.

Особую группу составляют электронные лампы с накаленным катодом, которые в зависимости от назначения могут быть генераторными, усилительными, выпрямительными, частотопре-образовательными, детекторными, измерительными и т. д. Большинство ламп рассчитано на работу в непрерывном режиме, но выпускаются и лампы специально для импульсного режима, создающие электрические импульсы большой мощности при условии, что длительность импульсов много меньше, чем промежутки времени между ними.

В зависимости от рабочего диапазона частот электронные лампы подразделяются на низкочастотные, высокочастотные и сверхвысокочастотные. Электронные лампы, имеющие только два электрода (катод и анод), называются диодами, причем диоды для выпрямления переменного тока электрической сети принято называть кенотронами. Лампы, содержащие управляющие электроды, обычно в виде сеток, бывают с общим числом электродов от трех до девяти и имеют соответственно названия: триод, тетрод, пентод, гексод, гептод, октод и эннод. При этом лампы, имеющие две сетки и более, т. е. начиная с тетрода, выделяются в группу многоэлектродных ламп. Если лампа содержит несколько систем электродов с независимыми потоками электронов, то ее называют комбинированной (двойной диод, двойной триод, триод—пентод, двойной диод—пентод и др.). По принципу работы и другим особенностям электронные лампы той или иной группы, в свою очередь, подразделяются на различные типы. Например, в группе электронных ламп для сверхвысоких частот имеются магнетроны, клистроны, лампы бегущей волны (ЛБВ), лампы обратной волны (ЛОВ) и другие.

Основными типами ионных приборов являются газотроны, тиратроны, стабилитроны и ртутные вентили (управляемые и неуправляемые). Большую группу составляют электронно-лучевые приборы, к которым относятся приемные и передающие телевизионные трубки различных типов, осциллографические и запоминающие трубки, электронно-лучевые переключатели и другие. В группу фотоэлектронных приборов входят электровакуумные фотоэлементы (электронные и ионные) и фотоэлектронные умножители.

Электронные и ионные приборы классифицируются еще ило многим другим признакам: по типу катода (накаленный или холодный), по устройству баллона (стеклянный, металлический, керамический или комбинированный, например металлокерами-ческий), по роду охлаждения (естественное или лучистое, принудительное воздушное, водяное).
Приведенная выше далеко не полная классификация показывает, что имеется большое количество различных типов электронных и ионных приборов; изучить их все, конечно, невозможно. В данной главе будут рассмотрены только самые основные из этих приборов, широко применяемые в радиоэлектронной аппаратуре.



теги:
Стр. 2 из 1112345678910...Последняя


radionet