Архив за июня, 2012


Генераторами называют электрические машины, преобразующие механическую энергию в электрическую. Принцип действия электрического генератора основан на использовании явления электромагнитной индукции, которое состоит в следующем. Если в магнитном поле постоянного магнита перемещать проводник так, чтобы он пересекал магнитный поток, то в проводнике возникнет электродвижущая сила (э.д.с), называемая э.д.с индукции (Индукция от латинского слова inductio — наведение, побуждение) , или индуцированной э.д.с. Электродвижущая сила возникает и в том случае, когда проводник остается неподвижным, а перемещается магнит. Явление возникновения индуцированной э.д.с. в проводнике называется электромагнитной индукцией. Если проводник, в котором индуцируется э.д.с, включить в замкнутую электрическую цепь, то под действием э.д.с. по цепи потечет ток, называемый индуцированным током.
Опытным путем установлено, что величина индуцированной э.д.с., возникающей в проводнике при его движении в магнитном поле, возрастает с увеличением индукции магнитного поля, длины проводника и скорости его перемещения. Индуцированная э.д.с. возникает только тогда, когда проводник пересекает магнитное поле. При движении проводника вдоль магнитных силовых линий э.д.с. в нем не индуцируется. Направление индуцированной э.д.с. и тока проще всего определить по правилу правой руки (рис.1): если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, отогнутый большой палец показывал бы направление движения проводника, то остальные вытянутые пальцы укажут направление действия индуцированной э.д.с. и направление тока в проводнике. Магнитные силовые линии направлены от северного полюса магнита к южному.

Правило правой руки

Рис. 1. Определение направления индуцированной э.д.с. по правилу правой руки

Имея общее представление об электромагнитной индукции, рассмотрим принцип действия простейшего генератора (рис. 2). Проводник в виде рамки из медной проволоки укреплен на оси и помещен в магнитное поле. Концы рамки присоединены к двум изолированным одна от другой половинам (полукольцам) одного кольца. Контактные пластины (щетки) скользят по этому кольцу. Такое кольцо, состоящее из изолированных полу колец, называют коллектором, а каждое полукольцо — пластиной коллектора. Щетки на коллекторе должны быть расположены таким образом, чтобы они при вращении рамки одновременно переходили с одного полукольца на другое как раз в те моменты, когда э.д.с, индуцируемая в каждой стороне рамки, равна нулю, т. е. когда рамка проходит свое горизонтальное положение.

Генератор постоянного тока

Рис. 2. Простейший генератор постоянного тока

С помощью коллектора переменная э.д.с, индуцируемая в рамке, выпрямляется, и во внешней цепи создается постоянный по направлению ток.
Присоединив к контактным пластинам внешнюю цепь с электроизмерительным прибором, фиксирующим величину индуцируемого тока, убедимся, что рассмотренное устройство действительно является генератором постоянного тока.
В любой момент времени t э.д.с. Е (рис. 3), возникающая в рабочей стороне Л рамки, противоположна по направлению э.д.с, возникающей в рабочей стороне Б. Направление э.д.с. в каждой стороне рамки легко определить, воспользовавшись правилом правой руки. Э.д.с, индуцируемая всей рамкой, равна сумме э.д.с, возникающих в каждой ее рабочей стороне. Величина э.д.с в рамке непрерывно изменяется. В то время, когда рамка подходит к своему вертикальному положению, количество силовых линий, пересекаемых проводниками в 1 с, будет наибольшим и в рамке индуцируется максимальная э.д.с. Когда рамка проходит горизонтальное положение, ее рабочие стороны скользят вдоль силовых линий, не пересекая их, и э.д.с. не индуцируется. В период движения стороны Б рамки к южному полюсу магнита (рис.3 , а, б) ток в ней направлен на нас. Этот ток проходит через полукольцо, щетку 2, измерительный прибор к щетке /ив сторону А рамки. В этой стороне рамки ток индуцируется в направлении от нас. Своего наибольшего значения э.д.с. в рамке достигает тогда, когда стороны ее расположены непосредственно под полюсами (рис.3, б).

Схема работы генератора постоянного тока

Рис. 3. Схема работы генератора постоянного тока

При дальнейшем вращении рамки э.д.с. в ней убывает и через четверть оборота становится равной нулю (рис. 3, в). В это время щетки переходят с одного полукольца на другое. Таким образом, за первую половину оборота рамки каждое полукольцо коллектора соприкасалось только с одной щеткой. Ток проходил по внешней цепи в одном направлении от щетки 2 к щетке 1. Будем продолжать вращать рамку. Электродвижущая сила в рамке снова начинает возрастать, так как ее рабочие стороны будут пересекать магнитные силовые линии. Однако направление э.д.с. изменяется на противоположное, потому что проводники пересекают магнитный поток в обратном направлении. Ток, индуцируемый в стороне А рамки, направлен теперь на нас. Но ввиду того, что рамка вращается вместе с коллектором, полукольцо, соединенное со стороной А рамки, соприкасается теперь не со щеткой 1, а со щеткой 2 (рис.3, г) и по внешней цепи проходит ток того же направления, как и во время первой половины оборота. Следовательно, коллектор выпрямляет ток, т. е. обеспечивает прохождение индуцируемого тока во внешней цепи в одном направлении. К концу последней четверти оборота (рис.3, д) рамка возвращается в первоначальное положение (см. рис.3, а), после чего весь процесс изменения тока в цепи повторяется.
Таким образом, между щетками 2 и 1 действует постоянная по направлению э.д.с, и ток по внешней цепи всегда проходит в одном направлении — от щетки 2 к щетке 1. Хотя этот ток остается постоянным по направлению, он меняется по величине, т. е. пульсирует. Такой ток практически трудно использовать.
Рассмотрим, как можно получить ток с небольшой пульсацией, т. е. ток, величина которого при работе генератора мало изменяется. Представим себе генератор, состоящий из двух расположенных перпендикулярно один к другому витков (рис.4). Начало и конец каждого витка присоединены к коллектору, состоящему теперь из четырех коллекторных пластин.

Объяснение принципа работы коллектора генератора постоянного тока

Рис.4.  Генератор постоянного тока с двумя витками

При вращении этих витков в магнитном поле в них возникает э.д.с. Однако индуцированные в каждом витке э.д.с. достигают своих нулевых и максимальных значений не одновременно, а позднее одна другой на время, соответствующее повороту витков на четверть полного оборота, т. е. на 90°. В положении, изображенном на рис.4, в витке 1 возникает максимальная э.д.с, равная Емах. В витке 2 э. д. с. не индуцируется, так как его рабочие стороны скользят вдоль магнитных силовых линий, не пересекая их. Величины э.д.с витков показаны на рис.5. По мере поворота витков э.д.с витка 1 убывает. Когда витки повернутся на 1/8 оборота , э.д.с. витка 1 станет равной Emin. В этот момент происходит переход щеток на вторую пару коллекторных пластин, соединенных с витком 2. Виток 2 уже повернулся на 1/8 оборота, пересекает магнитные силовые линии и в нем индуцируется э.д.с, равная той же величине Емах. При дальнейшем повороте витков э.д.с. витка 2 возрастает до наибольшей величины Емах. Таким образом, щетки оказываются все время соединенными с витками, в которых индуцируется э.д.с величиной от Emin до Емах.

Кривые пульсации электродвижущей силы двухвиткового генератора

Рис.5. Кривые пульсации электродвижущей силы двухвиткового генератора

Ток во внешней цепи генератора возникает в результате действия суммарной э.д.с. Поэтому он протекает непрерывно и только в одном направлении. Ток, как и прежде, будет пульсирующим, однако пульсация получается значительно меньше, чем при одном витке, так как э.д.с. генератора не снижается до нуля.
Увеличивая число проводников (витков) генератора и соответственно число коллекторных пластин, можно сделать пульсации тока очень малыми, т. е. ток по величине станет практически постоянным. Например, уже при 20 коллекторных пластинах колебания э.д.с. генератора не превысят 1 % среднего значения. Во внешней цепи получим ток, практически постоянный по величине.
Вместе с тем легко видеть, что генератор, изображенный на рис.4, имеет и очень существенный недостаток. В каждый определенный момент времени внешняя цепь присоединена посредством щеток лишь к одному витку генератора. Второй виток в этот же момент времени совершенно не используется. Электродвижущая сила, индуцируемая в одном витке, весьма мала, а значит и мощность генератора будет небольшой.
Для непрерывного использования всех витков их соединяют между собой последовательно. С этой же целью число коллекторных пластин уменьшают до количества витков обмотки. К каждой коллекторной пластине присоединяют конец одного и начало следующего витка обмотки. Витки в этом случае представляют собой последовательно соединенные источники электрического тока и образуют обмотку якоря генератора. Теперь электродвижущая сила генератора равна сумме э.д.с, индуцируемых в витках, включенных между щетками. Кроме последовательной, существуют и другие схемы соединения витков обмотки. Число витков берется достаточно большим, чтобы получить необходимую величину э.д.с. генератора. Поэтому и коллекторы тепловозных электрических машин получаются с большим количеством пластин.
Таким образом, благодаря большому числу витков обмотки удается не только сгладить пульсации напряжения и тока, но и повысить значение индуцируемой генератором э.д.с.
Выше был рассмотрен электрический генератор, состоящий из постоянных магнитов и одного или нескольких витков, в которых возникает ток. Для практических целей такие генераторы непригодны, так как от них невозможно получить большую мощность. Объясняется это тем, что создаваемый постоянным магнитом магнитный поток очень мал. Кроме того, пространство между полюсами создает для магнитного потока значительное сопротивление. Магнитный поток еще более ослабляется. Поэтому в мощных генераторах, к которым относятся и тепловозные, применяются электромагниты, создающие сильный магнитный поток возбуждения (рис.6). Для уменьшения магнитного сопротивления магнитопровода генератора витки обмотки размещают на стальном цилиндре, который заполняет почти все пространство между полюсами.
Этот цилиндр с помещенной на нем обмоткой и коллектором называется якорем генератора.

Схема возбуждения генератора постоянного тока (ДПТ)

Рис. 6. Схема генератора с электромагнитной системой возбуждения и стальным массивным якорем

Обмотка возбуждения генератора расположена на сердечниках главных полюсов. При прохождении по ней тока создается магнитное поле, называемое полем главных полюсов. При разомкнутой внешней цепи генератора магнитные силовые линии располагаются в полюсах и якоре симметрично вертикальной оси (рис.7, а). Для уяснения особенностей работы электрической машины введем понятия о геометрической и физической нейтралях.
Геометрической нейтралью называется линия, проведенная через центр якоря перпендикулярно оси противоположных полюсов (горизонтальная линия 01—01). Физическая нейтраль представляет собой условную линию, которая разделяет зоны влияния северного и южного полюсов на обмотку якоря и проходит перпендикулярно направлению магнитного потока электромашины.
В проводнике обмотки, который при вращении якоря проходит физическую нейтраль, э.д.с. не индуцируется, так как такой проводник скользит вдоль магнитных силовых линий, не пересекая их. В случае отсутствия тока в якоре (см. рис.7, а) физическая нейтраль n—n совпадает с геометрической нейтралью.

Реакция якоря, влияние реакции якоря на магний поток полюсов

Рис.7. Реакция якоря.
а — магнитный поток главных полюсов; б — магнитный поток, создаваемый обмоткой якоря; в — суммарный магнитный поток нагруженного генератора

При замыкании внешней цепи электрической машины ток пойдет и по обмотке якоря. Весь якорь в этом случае будет представлять собой мощный электромагнит, состоящий из стального сердечника и обмотки, по которой проходит ток. Следовательно, кроме потока полюсов, в нагруженном генераторе существует второй магнитный поток, называемый потоком якоря (рис.7, б). Магнитный поток якоря направлен перпендикулярно потоку главных полюсов. Оба магнитных потока накладываются друг на друга и образуют суммарное, или результирующее, поле, показанное на рис.7, в. Направление магнитного поля генератора в результате действия поля якоря смещается в сторону вращения якоря. В ту же сторону смещается и физическая нейтраль, которая занимает в этом случае положение n1-n1.
Влияние магнитного поля якоря на поле полюсов называется реакцией якоря. Реакция якоря отрицательно сказывается на работе генератора. Щетки М—М электрической машины должны быть всегда установлены по направлению физической нейтрали. Поэтому приходится смещать щетки генератора по отношению к геометрической нейтрали на некоторый угол Р (рис.7, в), так как в противном случае между щетками и коллектором возникает сильное искрение. Искрение вызывает подгар поверхности коллектора и щеток и выводит их из строя. Чем больше ток якоря, тем сильнее проявляется реакция якоря, тем на больший угол необходимо сдвигать щетки. При частых изменениях нагрузки тепловозного генератора пришлось бы почти непрерывно менять положение его щеток.
Реакция якоря не только смещает магнитное поле главных полюсов, но и частично ослабляет его, что приводит к уменьшению индуцируемой генератором э. д. с.
Для ослабления реакции якоря в генераторах между основными полюсами устанавливаются добавочные полюсы, а иногда с этой же целью в полюсные наконечники главных полюсов закладывают компенсационную обмотку. Добавочные полюсы создают дополнительное магнитное поле, которое в зонах установки щеток направлено навстречу полю якоря, вследствие чего действие его нейтрализуется (рис.8).

Добавочные полюса и их физический смысл, картинка

Рис. 8. Схема генератора с добавочными полюсами

Однако этим не ограничивается положительное влияние добавочных полюсов на работу генератора. После прохода через нейтраль генератора направление тока в каждом витке обмотки (см. рис.7) очень быстро изменяется на противоположное. На нейтрали виток оказывается замкнутым накоротко щетками. Такой виток называют коммутирующим (Коммутация от латинского слова commutatio — изменение, перемена). В коммутирующих витках (секциях) обмотки якоря вследствие очень быстрого изменения направления тока возникает довольно большая э.д.с. самоиндукции и взаимоиндукции, которую называют реактивной э.д.с. Эта э.д.с. в коммутирующих секциях усиливается действием магнитного потока якоря, который они пересекают. Действие реактивной э.д.с. приводит к сильному искрению щеток. Добавочные полюсы рассчитывают так, чтобы их магнитный поток был несколько больше магнитного потока якоря. Благодаря этому в коммутирующих секциях индуцируется дополнительная э.д.с. Новая э.д.с. имеет направление, противоположное реактивной э.д.с, и гасит ее, предотвращая интенсивное искрение.
Магнитное поле якоря изменяется с изменением нагрузки (тока) генератора, поэтому для его нейтрализации необходимо изменять и поле компенсационных устройств. Обмотку добавочных полюсов включают последовательно с обмоткой якоря, и по ней проходит весь ток якоря. С увеличением тока генератора возрастает магнитный поток якоря, но вместе с этим возрастает и компенсирующий его магнитный поток добавочных полюсов.
Компенсационная обмотка позволяет дополнительно улучшить распределение магнитного потока в электрической машине. Так, из рис.7 легко видеть, что в результате действия реакции якоря магнитный поток главных полюсов становится неравномерным — с одной стороны полюса он усиливается, а с другой — ослабляется. Это приводит к неравномерной нагрузке якорной обмотки, часть витков окажется перегруженной, ухудшаются условия работы щеток.
С помощью компенсационной обмотки, расположенной на главных полюсах, устраняется искажение магнитного потока непосредственно под главными полюсами. Однако одновременное применение добавочных полюсов и компенсационной обмотки значительно усложняет конструкцию электрических машин. Если удается осуществить удовлетворительную работу электрической машины посредством применения добавочных полюсов, то компенсационную обмотку стараются не применять. Компенсационные обмотки нашли практическое применение лишь в мощных электрических машинах.

На следующих рисунках представлен генератор Г-21 на 12 В, 0.22 кВт, 1450 -7000 об/мин.

 Задний щит генератора постоянного токаСтатор генератора с обмотками наглядноЯкорь генератора постоянного токаПередний щит генератора постоянного тока Траверса генератора постоянного токаОбщий вид генератора постоянного токаГенератор Г-21 на 12 В, 0.22 кВт


теги:


Если по проводу проходит переменный ток, то вокруг провода возникают переменные электрическое и магнитное поля, образующие вместе электромагнитное поле, представляющее собой особый вид материи.

Электромагнитное поле, движущееся в пространстве, иначе называется электромагнитной волной. Радиоволны являются именно такими электромагнитными волнами.

Раздельно друг от друга переменные электрическое и магнитное поля существовать не могут. Всякое изменение электрического поля вызывает появление переменного магнитного поля, и наоборот, всякое изменение магнитного поля вызывает появление переменного электрического поля. Нельзя называть электромагнитным полем постоянные электрическое и магнитное поля, существующие одновременно в каком-либо месте пространства. В этом случае оба поля самостоятельны и не имеют взаимодействия между собой. А электромагнитное поле является сочетанием равноправных переменных электрического и магнитного полей, взаимодействующих друг с другом, как бы поддерживающих друг друга.

Электромагнитное поле всегда движется в пространстве со скоростью, равной

Скорость распространения электромагнитной волны в пространстве

где (Эпсилон — ε ) и (μ) — соответственно диэлектрическая и магнитная проницаемости среды, заполняющей данное пространство, а с — скорость распространения электромагнитного поля в безвоздушном пространстве, составляющая 300 000 км/сек. Для воздуха можно считать (Эпсилон — ε ) = 1, (мю — μ ) = 1 и тогда V = с.

Взаимная связь между переменными электрическим и магнитным полями объясняет причину движения электромагнитного поля в пространстве. Изменения электрического поля создают в окружающем пространстве магнитное поле, которое не остается постоянным, а меняется, так как меняется создавшее его электрическое поле.

Но изменяющееся магнитное поле, в свою очередь, создает вокруг себя электрическое поле, которое тоже изменяется и создает опять магнитное поле и т. д. Таким образом, электромагнитное поле представляет колебательный процесс, захватывающий все новые части пространства. При своем распространении электромагнитное поле теряет связь с проводом, вокруг которого оно первоначально создалось. Можно выключить ток в проводе, но электромагнитная волна будет продолжать свое движение в пространстве.

Электромагнитные волны несут с собой энергию, полученную от тока в проводе. Радиоволны распространяются от провода с переменным током во все стороны подобно лучам света, которые также являются одним из видов электромагнитных волн. Принято говорить, что провод с переменным током излучает электромагнитные волны в пространство. Чем больше мощность переменного тока в проводе, тем больше энергия излучаемых волн. Еще сильнее зависит эта энергия от частоты. При повышении частоты в 2, 3, 4 и т. д. раза энергия излучаемых волн возрастает соответственно в 4, 9, 16 и т. д. раз, т. е. она пропорциональна квадрату частоты. Эффективное излучение электромагнитных волн возможно только в случае, когда длина провода соизмерима с длиной волны.

Низким частотам соответствуют очень длинные волны; например, переменному току электрической сети, имеющему частоту 50 гц, соответствует длина волны 6 000 000 м, или 6000 км. Таким образом, излучение на этой частоте может быть эффективным только при длине провода в сотни и тысячи километров. Отсюда ясно, что при сравнительно небольшой длине проводов токи низкой частоты практически дают ничтожное излучение электромагнитных волн по сравнению с токами высокой частоты. Для получения мощного излучения и передачи электромагнитных волн на большие расстояния необходимо применять токи высокой частоты порядка сотен тысяч и миллионов герц.

Электромагнитные волны свободно распространяются в безвоздушном пространстве. Но было бы неправильно считать, что электромагнитные волны есть движение энергии в пустоте, так как в природе нет пустоты и нет энергии без материи. В свете последних достижений науки можно утверждать, что электромагнитные волны представляют собой движущуюся материю.

В прошлом некоторые ученые предполагали, что все безвоздушное пространство и все промежутки между частицами обычных веществ заполнены особым видом материи — «мировым эфиром», а электромагнитные волны являются колебательным процессом в этом мировом эфире. Современная физика отвергла существование мирового эфира, однако до сих пор иногда Условно говорят, что радиостанция излучает волны «в эфир», что радиоволны распространяются «в эфире» и т. д.

Рассмотрим подробнее некоторые свойства электромагнитного поля и составляющих его электрического и магнитного полей. В электромагнитном поле электрические и магнитные силовые линии взаимно-перпендикулярны. Магнитные силовые линии являются замкнутыми, охватывающими либо проводник с током, либо переменное электрическое поле. Электрические силовые линии либо идут от одного электрического заряда к другому, либо представляют собой замкнутые линии, охватывающие переменное магнитное поле. Магнитные силовые линии у поверхности проводника с током параллельны этой поверхности. Электрические силовые линии не могут идти около поверхности идеального проводника вдоль нее, а всегда перпендикулярны к этой поверхности. Последнее свойство требует пояснения. Если имеется идеальный проводник, не обладающий сопротивлением, то при прохождении тока в нем не образуется падения напряжения. Все ети точки имеют один и тот же потенциал. Значит, вдоль его поверхности электрические силовые линии идти не могут, так как они всегда проходят через точки с разными потенциалами.

Два последних свойства определяют структуру электромагнитного поля около поверхности проводника, т. е. на границе между проводником и окружающим его пространством. Поэтому их называют граничными условиями.

Электромагнитное поле вблизи поверхности проводника всегда имеет такую структуру, при которой выполняются эти граничные условия.

Электромагнитные волны, распространяющиеся в свободном пространстве или вдоль двухпроводной линии, являются поперечными. У них электрические и магнитные силовые линии лежат в плоскости, перпендикулярной к направлению распространения волны, т. е. в поперечной плоскости. Иначе говоря, у такой волны направления сил магнитного и электрического полей находятся в плоскости, перпендикулярной к направлению движения волны.

Сила поля характеризуется величиной напряженности поляу являющейся вектором. Как известно, векторами называют величины, имеющие не только числовое значение, но и определенное направление. Принято векторы изображать на чертежах стрелками, причем длина стрелки может показывать числовое значение вектора в каком-либо масштабе, а направление стрелки должно соответствовать направлению действия данного вектора. Вектор напряженности поля в данной точке всегда направлен по касательной к силовой линии, проходящей через эту точку. На (рис.1) изображены для поперечной волны векторы напряженности электрического поля Е, напряженности магнитного поля H и скорости распространения волны V. Взаимное расположение этих векторов для поперечной волны подчиняется cледующему правилу: если вращать винт по кратчайшему расстоянию от E к H, то его поступательное движение покажет направление вектора V (рис.1).

Взаимное расположение векторов Е, Н и V в поперечной волне

Рис.1 — Взаимное расположение векторов Е, Н и v в поперечной волне

Иногда изображают стрелками только два вектора, например Е и H, а третий вектор, перпендикулярный к плоскости чертежа, показывают в виде крестика, если он направлен от нас, или в виде точки, если он направлен на нас (рис.2).

Другой способ изображеня векторов Е, Н и V.

Рис.2 — Другой способ изображеня векторов Е, Н и V.

Следует помнить, что в электромагнитной волне векторы Е и H в каждой точке пространства непрерывно изменяют свою величину (например, по синусоидальному закону). Векторы Е и Н изменяются также и вдоль направления распространения волны.

От величин Е и H зависит мощность электромагнитной волны. Если выражать Е в вольтах на метр и H в амперах на метр, то их произведение дает мощность в ваттах потока энергии, переносимой электромагнитной волной через 1 м2 поперечного сечения волны. Произведение векторов Е и H называют вектором Пойнтинга и измеряют в ваттах на квадратный метр. По направлению этот вектор совпадает с вектором V.




УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ МАШИН ПОСТОЯННОГО ТОКА. ФИЗИКА ПРОЦЕССА.

ПРИНЦИП ДЕЙСТВИЯ МАШИН ПОСТОЯННОГО ТОКА

       Электрическими машинами называются устройства, предназначен­ные для преобразования механической энергии вращения в электри­ческую (генератор) и наоборот, электрическую энергию в механичес­кую (двигатель). Работа электрической машины основана на единст­ве закона электромагнитной индукции и закона электромагнитных сил.

Возьмем устройство, состоящее из двух магнитных полюсов создающих постоянное магнитное поле, и якоря – стального цилиндра с уложен­ным на нем витком из электропроводного материала. Концы витка при­соединены к двум металлическим полукольцам, изолированным друг от друга и от вала. Полукольца соприкасаются с неподвижными щет­ками, соединенными с внешней цепью (рисунок 1.1).

При вращении якоря в соответствии с законом электромагнитной индук-ции

Рисунок 1.1

 При вращении якоря в соответствии с законом электромагнитной индукции в проводниках витка  ab и cd  при пересечении ими магнитного поля будет индуктироваться ЭДС, которая при наличии стального цилиндра равна

 e = BLV

где      V – линейная скорость движения проводника относительно магнитного поля;

B – индукция магнитного поля;

L – длина активной части витка.

Направления ЭДС в проводниках  ab и cd  определяется по правилу правой руки. По контуру  abcd  эти ЭДС складываются и, так как верхний и нижний проводники находятся в одинаковых магнитных ус­ловиях, то ЭДС витка будет

 ЭДС витка ДПТ равна

Таким образом, в данных условиях характер изменения во времени ЭДС в проводнике при вращении определяется характером распределе­ния индукции в зазоре. Распределение ее по окружности якоря нерав­номерное, так как магнитное сопротивление  Rμ  потоку различное. Под полюсами индукция В имеет максимальное значение, в проме­жутке между полюсами индукция уменьшается, достигая на линии qq нулевого значения (рисунок 1.2,а). Линия dd, проходящая через центр якоря вдоль полюсов, называется продольной осью машины, а линия qq, проходящая через центр якоря посредине между полюсами, называется поперечной осью. Поперечную ось также называют геометрической ней­тралью. Часть окружности якоря, приходящуюся на один полюс, называет полюсным делением и обозначают τ.

 Часть окружности якоря, приходящуюся на один полюс, называет полюсным делением и обозначают τ.

Рисунок 1.2

 

При вращении якоря через каждые полоборота проводники  ab и cd  оказываются в поле противоположных полюсов. Поэтому направле­ние ЭДС в них меняется на противоположное. Таким образом, при вращении якоря в витке индуктируется переменная ЭДС (рисунок 1.2,б). Для получения во внешней цепи постоянного тока устанавливают спе­циальный переключатель, называемый коллектором. Проводники ab и cd присоединяются к полукольцам, изолированным друг от друга и от вала. Полукольца (пластины коллектора) соприкасаются с непод­вижными щетками, соединенными с внешней цепью. При вращении якоря каждая из щеток будет соприкасаться только с той коллекторной пластиной и соответственно только с тем из проводников, который на­ходится под полюсом данной полярности. Направление ЭДС в витке изменяется на линии геометрической нейтрали и в это же момент происходит переключение полуколец к щеткам А и В. В резуль­тате полярность щеток в процессе работы машины остается неизмен­ной, а ЭДС и ток во внешней цепи становятся постоянными по направ­лению и переменным» по величине (рисунок 1.3). Таким образом, кол­лектор играет роль механического переключателя сторон витка к щет­кам, т.е. является выпрямителем. Чтобы сгладить пульсацию ЭДС и тока во внешней цепи, на якоре располагают несколько витков, при­соединенных к соответствующим парам коллекторных пластин и сдви­нутых относительно друг друга на некоторый угол. Практически уже при 16 витках на якоре пульсации тока становятся незаметными и ток во внешней цепи можно считать постоянными не только по направ­лению, но и по величине. Таким образом, мы получили генератор пос­тоянного тока.

 При вращении якоря в витке индуктируется переменная ЭДС

Рисунок 1.3

 

Рассмотрим работу данной системы в режиме двигателя. Если к щеткам приложить напряжение внешнего источника электроэнергии, то в витке потечёт ток. Согласно закону электромагнитных сил на каж­дую сторону витка будет действовать сила

Согласно закону электромагнитных сил на каж¬дую сторону витка будет действовать сила

Эти силы создадут вращающий момент

Вращающий момент в электродвигателе постоянного тока

Под действием этого момента якорь начнет вращаться, преодолевая момент сопротивления на валу. После прохождения сторонами витка линии геометрической нейтрали они попадают в зону полюса противоположной полярности. Но в это же время в них изменяется и направле­ние тока, что осуществляется с помощью коллектора. В резуль­тате направление момента остается прежним, и якорь будет вращаться в том же направлении. В этом случае коллектор выполняет роль ин­вертора – преобразователя постоянного тока в переменный



теги:


ПОДРОБНО О СИСТЕМЕ СОКРАЩЕННОГО ОБОЗНАЧЕНИЯ НОМИНАЛЬНЫХ СОПРОТИВЛЕНИЙ РЕЗИСТОРОВ И ЕМКОСТЕЙ КОНДЕНСАТОРОВ

На резисторах и конденсаторах относительно больших размеров их номинальные сопротивления или емкости маркируют, применяя общепринятые сокращенные обозначения единиц электрических величин, а рядом — возможное отклонение от номинала в процентах, например: 1,5 10%, 33 20%. Для обозначения номиналов малогабаритных резисторов и конденсаторов применяют специальный код, слагающийся из условных буквенных и цифровых знаков. Так же на сегодняшний день широко применяется мнемонический код (цветные кольца или точки), тем более в импортной аппаратуре. Знать его просто необходимо. По такой системе единицу сопротивления ОМ сокращенно обозначают буквой (Е), килоом — буквой (К), мегаом — буквой (М). Сопротивления резисторов от 100 до 910 Ом выражают в долях килоома, а сопротивления от 100000 до 910000 Ом — в долях мегаома. Если номинальное сопротивление резистора выражают целым числом; то буквенное обозначение единицы измерения ставят после этого числа, например ЗЗЕ (33 Ом), 47К (47кОм), 1М (1 МОм). Когда сопротивление резистора выражают десятичной дробью меньше единицы, то буквенное обозначение единицы измерения располагают перед числом, например К22 (220 Ом), М47 (470 кОм). Выражая сопротивление резистора целым числом с десятичной дробью, целое число ставят впереди буквы, а десятичную дробь — после буквы, символизирующей единицы измерения (буква заменяет запятую после целого числа). Примеры: 1Е5 (1,5 Ом), 2К2 (2,2 кОм), 1М5 (1,5 МОм). Допустимое отклонение наносят после обозначения номинального сопротивления следующими буквами: Допуск, 10%, 5%, ©, (И). Предположим, на малогабаритном резисторе обозначено: 1М5И. Это значит, что номинальное сопротивление резистора 1,5 МОм, допустимое отклонение от номинала 5%.

Резистор в полоску как узнать номинал. Цветовая характеристика резисторов.

Рис.1 — Цветовая маркировка резисторов.

Как читать?
Берем резистор с цветовой маркировкой. На корпусе — 4 полоски. Три находятся рядом, одна — чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее — см. кодовую таблицу.

К примеру вас получилось число 124 — это 12 и еще 4 нуля, последняя цифра указывает на количество нулей. Получаем 120000 = 120 кОм.

Кодовая маркировка резисторов.

Рис.2 — Номинал резистора и его маркировочный код.

Номинальные емкости конденсаторов до 91 пФ выражают в пикофарадах, используя для обозначения этой единицы емкости букву (П). Емкости от 100 до 9100 пФ выражают как говорилось выше, в долях нанофарады (1 нФ = 1000 пФ или 0,001 мкФ), а от 0,01 до 0,091 мкФ — в нанофарадах, обозначая нанофараду буквой (Н). Емкости от 0,1 мкФ и выше выражают в микрофарадах, используя для обозначения этой единицы емкости букву (М). Если емкость конденсатора выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пФ), 15Н (15 НФ = 15 000 пФ или 0,015 мкФ), 10М (10мкФ). Чтобы номинальную емкость конденсатора выразить десятичной дробью, буквенное обозначение единицы емкости располагают перед числом: HI5 (0,15 нФ — 150 пФ), М22 (0,22 мкФ). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ею запятую, например: 1П2 (1,2 пФ), 4Н7 (4,7 нФ = 4700 пФ), 1М5 (1,5 мкФ). Допустимое отклонение маркируют после обозначения номинальной емкости цифрами в процентах, например 30%, 20%, 10%, 5% и т. д.

Номиналы маркировки конденсаторов

Рис.3 — Таблица маркировки конденсаторов и их значение.

Более подробная информация о маркировке радиодеталей находится на страницах специальной литературы, которую вы можете скачать и ознакомиться с нашего сайта — «Кодовая и цветовая маркировка пассивных элементов, диодов, транзисторов»

 


теги:
Стр. 4 из 9123456789


radionet